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The design of complex systems is mostly based on
costly trial and error techniques, where a system is
put through a series of tests and adjustments.

Contract-based design is one of the most promising
system design approaches to increase productivity
and guarantee correctness:

* Allows principled decompositions and
compositions of requirements in the early stages
of design enabling identification of design flaws
without spending large  resources on
development stages

* Needs a toolkit which effectively computes these
operations to enable its wide adoption

This project develops a Python package which allows
users to input contracts and perform operations with
them. The package will output the resulting contract
as well as be able to generate system behaviors that
satisfy the contract. Contract requirements will be
specified by strings of logic input by the user.
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Figure 1: Environment-Component-Contract Structure

A Contract is a rigorous description of a
component’s requirements written in formal
logics and can distinguish the responsibilities of a
component from that of its environment using
Assumptions and Guarantees.

» Signal temporal logic (STL) is a timed logic which

can formally specify the requirements of
components in terms of time.

* Unlike linear temporal logic (LTL) which can only

reason about binary variables, STL allows you to
reason about continuous variables.

e ex) x greater than or equal to 3 eventually

between time 0 and 10 — “F[0,10](3 < x)”
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* STL tree traversal produces constraints which every constraint is solved using Gurobi, a linear
become part of an optimization problem

optimization solver.

Examples

* Facilitates translation of STL contracts
into mixed integer constraints and
automatic generation of system behaviors
that satisfy the contracts

Simple Contract Operations The vehicle must navigate two rows of crops and then
return to its starting position along a predetermined
route in a 20 minute (equivalent to 20 timestep) cycle.
We create the following contracts:
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cl = contract('T', '"l<=x<=3")
c2 = contract('x<=5", '2<=x+y<=10’)

(conjunction(cl,c2).synthesize()).get_vars()




