
• A Contract is a rigorous description of a
component’s requirements written in formal
logics and can distinguish the responsibilities of a
component from that of its environment using
Assumptions and Guarantees.

• Signal temporal logic (STL) is a timed logic which
can formally specify the requirements of
components in terms of time.

• Unlike linear temporal logic (LTL) which can only
reason about binary variables, STL allows you to
reason about continuous variables.

• ex) x greater than or equal to 3 eventually
between time 0 and 10 — “F[0,10](3 ≤ x)”

COASTL is a Python tool which computes
operations for design-by-contract system
design:

• Parses STL expressions of requirements
into a tree structure, making the
computation of contract operations
simpler and faster

• Facilitates translation of STL contracts
into mixed integer constraints and
automatic generation of system behaviors
that satisfy the contracts

Thank you to Chanwook Oh and Prof.
Pierluigi Nuzzo for their guidance and
hands-on help in formulating and carrying
out this project. Additional thanks to Dr.
Megan Harrold and Dr. Katie Mills for their
mentorship throughout.

The design of complex systems is mostly based on
costly trial and error techniques, where a system is
put through a series of tests and adjustments.

Contract-based design is one of the most promising
system design approaches to increase productivity
and guarantee correctness:

• Allows principled decompositions and
compositions of requirements in the early stages
of design enabling identification of design flaws
without spending large resources on
development stages

• Needs a toolkit which effectively computes these
operations to enable its wide adoption

This project develops a Python package which allows
users to input contracts and perform operations with
them. The package will output the resulting contract
as well as be able to generate system behaviors that
satisfy the contract. Contract requirements will be
specified by strings of logic input by the user.

Introduction
Contract Operations

Given two contracts 𝐶1 = 𝐴(, 𝐺(and 𝐶2 = 𝐴,, 𝐺, ,
various operations can be carried out in order to
combine the requirements in meaningful ways.

• Conjunction of contracts to join requirements for
one systems:

𝐶-./0 = [𝐴(∪ 𝐴,, 𝐺(∩ 𝐺,]

• Composition of contracts to join requirements for
multiple systems in one environment:

𝐶-.56 = [𝐴(∩ 𝐴, ∪ ¬ 𝐺(∩ 𝐺, , 𝐺(∩ 𝐺,]

Translating Contracts into Mixed Integer Constraints

• Boolean constraints enforce correctness of logical
operators.

• STL tree traversal produces constraints which
become part of an optimization problem

• Solving optimization problem provides solutions
for every binary variable.

• For Atomic Predicate (AP) expression 𝑥 ≤ 3, truth
is represented by 𝑏, constraints 𝑏 − 1 ∗ 𝑀 ≤ 3 −
𝑥 and 3 − 𝑥 ≤ 𝑏 ∗ 𝑀 − 𝜖 are imposed to find
continuous 𝑥

COASTL: A Software Package for Contract Operations
and Signal Temporal Logic Processing

Pratham Gandhi, gandhip@horacemann.org
Horace Mann School, Class of 2020

University of Southern California, Department of Electrical and Computer Engineering, DesCyPhy Lab

STL Parsing

• Parses Signal Temporal Logic
expressions such as
“G[0,10]((x<=5)&&((y<=7)||
(~(10<=y))))” into a tree
structure

• Implemented by finding unique
expressions encased in
parentheses, and constructing
nodes, as shown in Fig. 2.

The vehicle’s maximum velocity and
acceleration are constrained to be 0.5 m/s
and and 1.67 m/s2, respectively. Solving
the optimization problem produced by
guarantees from the saturated contract
created by
conjunction(c1,c2,c3,c4,c5,c6,c7)
produces the results shown in Fig. 5.

Figure 2: STL Tree

Simple Contract Operations

c1 = contract('T', '1<=x<=3')
c2 = contract('x<=5', '2<=x+y<=10’)

Perform conjunction (𝑐1 ∧ 𝑐2), saturate the resulting
contract, and solve the guarantees to find a solution
guaranteed by c1 and c2:
(conjunction(c1,c2).synthesize()).get_vars()
>> ['x': 1,'y': 9]
Autonomous Vehicle Control
Consider the example of synthesizing a control system
for an autonomous farming vehicle.

The vehicle must navigate two rows of crops and then
return to its starting position along a predetermined
route in a 20 minute (equivalent to 20 timestep) cycle.
We create the following contracts:
c1 = ('T','F[0,3]((x==55)&&(y==27))')
c2 = ('T','F[4,6]((x(1)==5)&&(x(2)==13))')
c3 = ('T','F[7,10]((x(1)==55)&&(x(2)==5))')
c4 = ('T','F[11,15]((x(1)==55)&&(x(2)==35))')
c5 = ('T','F[16,20]((x(1)==5)&&(x(2)==35))')
c6 = ('T',
'G[0,20](~((10<=x(1)<=50)&&(26<=x(2)<=28)))')
c7 = ('T',
'G[0,20](~((10<=x(1)<=50)&&(12<=x(2)<=14)))')

Figure 5: Autonomous Vehicle Control from Contracts

Expression
“𝑏@ = 𝑏(∪
𝑏,” produces
constraints
𝑏@ == 1,
𝑏@ ≤ 𝑏(+
𝑏_2, and 𝑏(+
𝑏, ≤ 2 ∗ 𝑏@,
visualized in
Fig. 3.

Approach

Figure 4: AP ConstraintsEnvironment Component 1 Component 2

Contract 1 Contract 2
Figure 1: Environment-Component-Contract Structure

Figure 3: “OR” Constraints

• 𝑀, 𝜖 are
maximum,
minimum bounds
for optimization
problem (default
to 10D, 10ED)

• Fig. 4 shows
possible solutions
for some different
combinations of

Examples (cont.)

binary and continuous values of relevant
variables. The larger optimization problem with
every constraint is solved using Gurobi, a linear
optimization solver.

Background

Examples

Conclusion

Acknowledgements

