USC Viterbi

School of Engineering
Ming Hsieh Department
of Electrical Engineering

COASTL: A Software Package for Contract Operations

and Signal Temporal Logic Processing

Pratham Gandhi, gandhip@horacemann.org
Horace Mann School, Class of 2020

University of Southern California, Department of Electrical and Computer Engineering, DesCyPhy Lab

Introduction Approach Examples (cont.)

/

\

\

The design of complex systems is mostly based on
costly trial and error techniques, where a system is
put through a series of tests and adjustments.

Contract-based design is one of the most promising
system design approaches to increase productivity
and guarantee correctness:

* Allows principled decompositions and
compositions of requirements in the early stages
of design enabling identification of design flaws
without spending large resources on
development stages

* Needs a toolkit which effectively computes these
operations to enable its wide adoption

This project develops a Python package which allows
users to input contracts and perform operations with
them. The package will output the resulting contract
as well as be able to generate system behaviors that
satisfy the contract. Contract requirements will be
specified by strings of logic input by the user.

W

i i : Fig. 4 how o
Background nodes, as shown in Fig. 2. Flgure 2:5TL Tree & hows Dy
possible solutions L el pe 4

e .) . . N [: . : N
Contract Operations * Solving optimization problem provides solutions The vehicle’s maximum velocity and

Given two contracts C1 = [A;, Gy] and €2 = [A,,G,], 'O &Very Pinary variable. acceleration are constrained to be 0.5 m/s

: 5 . :
various operations can be carried out in order to o T E)l;press;)on and and. 1.'67. m/s*, respectively. Solving
combine the requirements in meaningful ways. " - 0= DU the optimization problem produced by
_ . N . | * by” produces guarantees from the saturated contract
e Conjunction of contracts to join requirements for constraints created by
one systems: by == 1, conjunction(cl,c2,c3,c4,c5,c6,c7)
by < by + roduces the results shown in Fig. 5
Ceoni = |[A1UA,, G NG 0 1 P g. 2.
conj [1 241 2] b_2,and b1+
L. L. . Path for Vehicle Synthesized from Contracts c1-c7
e Composition of contracts to join requirements for b, < 2 * by, “f
multiple systems in one environment: visualized in

b

_ Figure 3: “OR” Constraints Fig. 3. il
Ceomp = [(A1 N A2) U =(G1 N G2), G2 N G e For Atomic Predicate (AP) expression x < 3, truth
STL Parsing is represented by b, constraints (b — 1) * M < 3 — =
_ < _ . . -§20
 Parses Signal Temporal Logic @ X an.d 3—x=bxM—¢€ are imposed to find §
. continuous x 15
expressions such as .
e M,e are o

“G[0,10]((x<=5)&&((y<=7

) — .
(~(10<=y))))” into a tree @ maximum,

minimum bounds

structure -
@G for optimization

* Implemented by finding unique problem (default

expressions encased in @ to 104, 10—4)

parentheses, and constructing

1 1 1 1 1 J
0 10 20 30 40 50 60
x-coordinate [m]

Figure 5: Autonomous Vehicle Control from Contracts
_ /

Conclusion

>

Component 1 Component 2

[Contract 1 } [Contract 2]

Figure 1: Environment-Component-Contract Structure

A Contract is a rigorous description of a
component’s requirements written in formal
logics and can distinguish the responsibilities of a
component from that of its environment using
Assumptions and Guarantees.

» Signal temporal logic (STL) is a timed logic which

can formally specify the requirements of
components in terms of time.

* Unlike linear temporal logic (LTL) which can only

reason about binary variables, STL allows you to
reason about continuous variables.

e ex) x greater than or equal to 3 eventually

between time 0 and 10 — “F[0,10](3 < x)”

~ | Translating Contracts into Mixed Integer Constraints for some different 2= doublex=b10'H10) | 2= doube(ty (103 | COASTL is a Python tool which computes
. , T Figure 4: AP Constraints operations for design-by-contract system
* Boolean constraints enforce correctness of logical combinations of dgsi n- sh-by Y
operators. binary and continuous values of relevant sh-
variables. The larger optimization problem with

 Parses STL expressions of requirements |
into a tree structure, making the
computation of contract operations
simpler and faster

* STL tree traversal produces constraints which every constraint is solved using Gurobi, a linear
become part of an optimization problem

optimization solver.

Examples

* Facilitates translation of STL contracts
into mixed integer constraints and
automatic generation of system behaviors
that satisfy the contracts

Simple Contract Operations The vehicle must navigate two rows of crops and then
return to its starting position along a predetermined
route in a 20 minute (equivalent to 20 timestep) cycle.
We create the following contracts:

Perform conjunction (c1 A c2), saturate. the result_lng 1 = ('T', "F[0, 3] ((x==55)8&(y==27))")

contract, and solve the guarantees to find a solution -, _ C'T', "F[4,6]((x(1)==5)&&(x(2)==13))") Acknowledgements

guaranteed by c1 and c2: C'T","F[7,10]((x(1)==55)&&(x(2)==5))")
C'T', "F[11,15]C(x(1)==55)&&(x(2)==35))") Thank you to Chanwook Oh and Prof.
.) - E'T','F[16,20]CCX(1)==5)&&(X(2)==35))') Pierluigi Nuzzo for their guidance and
>> L'x'0 1,y " L hands-on help in formulating and carrying

. 20](~((10<=x(1)<= 26<=x(2)<=2 '
Autonomous Vehicle Control 7 =’(.¥’((0<=x(1)<=50)88(26<=x(2)<=28))) ") out this project. Additional thanks to Dr.
Consider the example of synthesizing a control system 'G[0,20](~((10<=x(1)<=50)&&(12<=x(2)<=14)))") Megan Harrold and Dr. Katie Mills for their

for an autonomous farming vehicle. mentorship throughout.

cl = contract('T', '"l<=x<=3")
c2 = contract('x<=5", '2<=x+y<=10’)

(conjunction(cl,c2).synthesize()).get_vars()

